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My Research Group

Research underway in the following areas:

• high-order discretization methods in time and space

– summation-by-parts operators
– implicit Runge-Kutta methods

• algorithms for aerodynamic shape optimization

– two-level free-form deformation geometry control
– integrated mesh movement method
– enables substantial geometric flexibility (very large shape changes),

analytical geometry representation

• application of aerodynamic shape optimization to unconventional energy-
efficient aircraft configurations

• active flow control for drag reduction
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Lifting Fuselage Configuration for Regional Class Aircraft

• shape found through RANS-based aerodynamic shape optimization

• narrower than classical hybrid wing-body

• centerbody carries about 30% of the lift (more than D8 for example)

• drag savings estimated at 6-10% relative to optimized conventional aircraft
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High-Order Methods

• huge potential efficiency benefits

• popular for large eddy and direct simulation of turbulent flows

• most production Reynolds-averaged Navier-Stokes solvers are

second order

• singularities and discontinuities such as shocks are an issue

• robustness is an issue
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Summation by Parts (SBP) Operators

• Operators constructed specifically to satisfy the SBP property

– leads to provable time stability

– usually used with simultaneous approximation terms (SATs)

for weak imposition of boundary and interface conditions

• Other known operators satisfy the SBP property

– some discontinuous Galerkin (DG) operators

– some correction procedure by reconstruction (CPR) operators

– some spectral collocation operators
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“Discontinuous” Approaches

• Includes DG, CPR, and SBP-SAT approaches

– SBP-SAT approach can also be implemented in a continuous

manner

• High order achieved through interior degrees of freedom

• Have some nice properties that can be advantageous:

– parallelization on modern computer architectures

– reduced need for smooth meshes

• Potential disadvantage:

– need for high order meshes
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Classical (pre-2014) Summation by Parts Operators

∂U
∂x
≈ Du = H−1Qu

where H is a (diagonal) symmetric positive-definite (SPD) matrix and

Q+QT = E =


−1

0
. . .

0
1


The norm matrix H defines an inner product, norm, and quadrature as

(u,v)H = uTHv , ||u||2H = uTHu ,

∫ xR

xL

Udx ≈ 1THu ,

∫ xR

xL

UVdx ≈ uTHv
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Integration by Parts

IBP (x derivative):∫
Ω

V∂U
∂x

dΩ +

∫
Ω

U∂V
∂x

dΩ =

∮
Γ

VUnxdΓ

Let V = U :

2

∫
Ω

U∂U
∂x

dΩ =

∮
Γ

U2nxdΓ

Let V = 1: ∫
Ω

∂U
∂x

dΩ =

∮
Γ

UnxdΓ

Summing over the three components of a vector gives the divergence theorem
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SBP Discretely Mimics Integration by Parts

IBP (x derivative):∫
Ω

V∂U
∂x

dΩ +

∫
Ω

U∂V
∂x

dΩ =

∮
Γ

VUnxdΓ

IBP (one dimension):∫ xR

xL

V∂U
∂x

dx+

∫ xR

xL

U∂V
∂x

dx = VU|xRxL

SBP:
vTHDu + uTHDv = vTEu = vRuR − vLuL

Setting v = u gives

2uTHDu = uTEu = u2
R − u2

L

Observe that this makes the role of E clear:

vTEu ≈
∮

Γ

VUnxdΓ
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Linear Convection Equation: Well Posedness

Linear convection equation:

∂U
∂t

= −∂U
∂x

, xL ≤ x ≤ xR , U(xL, t) = UL(t)

Multiply by 2U and integrate over the domain:∫ xR

xL

∂U2

∂t
dx = −

∫ xR

xL

∂U2

∂x
dx

d

dt

∫ xR

xL

U2dx = −(U2
R − U2

L) ≤ 0 if UL = 0
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Semi-Discrete Form

du

dt
= −Du = −H−1Qu

Multiply by 2uTH:

2uTH
du

dt
= −2uTHDu = −2uTHH−1Qu = −2uTQu

d||u||2H
dt

= −2uT
(
Q+QT

2

)
u = −uTEu = −(u2

n − u2
1)

Mimics continuous result because

Q+QT = E =


−1

0
. . .

0
1


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Classical finite-difference SBP operator (p = 1)

D = H−1Q

Gives a first-order (p) approximation to the first derivative (at the boundary
nodes) and second-order (2p) in the interior, which will produce a second-order
(p+ 1) solution to the linear convection equation (for diagonal H)

H = ∆x


1/2

1
. . .

1
1/2

 (composite trapezoidal rule)

Q =


−1/2 1/2
−1/2 0 1/2

. . . . . . . . .
−1/2 0 1/2

−1/2 1/2


N.B. Functional superconvergence for dual consistent formulations
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A classical finite-difference SBP operator (p = 2)

Gives a second-order (p) approximation to the first derivative (at the near-
boundary nodes) and fourth-order (2p) in the interior, which will produce a
third-order (p+ 1) solution to the linear convection equation (for diagonal H)

D = H−1Q

H = ∆x


17/48

59/48
43/48

49/48
1

. . .

 (Gregory rule)

Q =


−1/2 59/96 −1/12 −1/32
−59/96 0 59/96 0

1/12 −59/96 0 59/96 −1/12
1/32 0 −59/96 0 8/12 −1/12

0 0 1/12 −8/12 0 8/12 −1/12
. . . . . . . . . . . . . . .


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Boundary and Interface Conditions:
Simultaneous Approximation Terms (SATs)

• weak imposition of boundary and interface conditions

- penalty methods

• discontinuous solutions

• similar to discontinuous Galerkin finite-element

methods
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Stability

du

dt
= −H−1Qu−H−1(u1 − UL)e1

where e1 = [1, 0, . . . , 0]T

Gives, for UL = 0:

d||u||2H
dt

= −2uTQu− 2uT (u1)e1 = −(u2
n − u2

1)− u2
1 = −(u2

n + u2
1) ≤ 0
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Conservation at Interfaces: Two Neighbouring Blocks

Conservation

duL
dt

= −H−1
L QLuL −H−1

L (uL1 − UL)e1

duR
dt

= −H−1
R QRuR −H−1

R (uR1 − uLnL)e1

Gives:

1THL
duL
dt

= −(uLnL − UL)

1THR
duR
dt

= −(uRnR − u
L
nL

)

1THL
duL
dt

+ 1THR
duR
dt

= −(uRnR − UL)

Symmetric SATs are also possible
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Generalized Summation by Parts (GSBP) Property

• Introduces the following three generalizations:

– nonuniform nodal distributions

– no repeating interior operator

– operators without nodes on one or both boundaries

• With these generalizations it can be shown that some

existing operators satisfy the GSBP property

• Enables the construction of novel operators (because

no basis functions are needed explicitly)

• No longer restricted to Gregory quadrature rules
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Generalized Summation by Parts Operators: Definition

An operator D is an approximation to the first derivative of degree p with the
SBP property if the accuracy condition is met, H is an SPD matrix, and

Q+QT = E

where (xi)TExj = (xR)i+j − (xL)i+j, i, j ∈ [0, r], r ≥ p

E can be constructed as

E = tRt
T
R − tLt

T
L

where tL and tR satisfy

tTLx
j = xjL, tTRx

j = xjR , j ∈ [0, r]

This means that tTLu ≈ UL, tTRu ≈ UR and we get

vTEu ≈ VRUR − VLUL for SBP

and hence uTEu ≈ U2
R − U2

L for stability (with SAT)
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Generalized SBP example: nonuniform nodal distribution

Hybrid Gauss-trapezoidal-Lobatto quadrature nodal distribution given for 9 nodes
by (x ∈ [0, 1]):

x =
1

8

[
0 12

13 2 3 4 5 6 (8− 12
13) 8

]T

D = 8



−864
553

408811
209034 −2901

7742 − 278
14931

−41
78 0 15

26 − 2
39

967
7932 −49855

71388 0 11800
17847 − 56

661
139

23460
9971

164220 −1770
2737 0 1296

1955 − 162
1955

1
12 −2

3 0 2
3 − 1

12
162
1955 −1296

1955 0 1770
2737 − 9971

164220 − 139
23460

56
661 −11800

17847 0 49855
71388 − 967

7932
2
39 −15

26 0 41
78

278
14931

2901
7742 −408811

209034
864
553


Includes a standard interior operator that can be repeated

D.W. Zingg [http://goldfinger.utias.utoronto.ca/dwz] 20



Second generalized SBP example: nonuniform nodal
distribution with no repeating interior operator

Diagonal-norm operator on Chebyshev-Gauss-Lobatto quadrature nodal
distribution given for 5 nodes by (x ∈ [0, 1]):

x =
1

2

[
−1 −1

2

√
2 0 1

2

√
2 1

]T
+

(
1

2

)
1

where 1 is a vector of ones

D = 2



−15
2 8 + 2

√
2 −6 8− 2

√
2 −5

2

−1− 1
4

√
2 0 3

2

√
2 −

√
2 1− 1

4

√
2

1
2 −

√
2 0

√
2 −1

2

−1 + 1
4

√
2

√
2 −3

2

√
2 0 1 + 1

4

√
2

5
2 −8 + 2

√
2 6 −8− 2

√
2 15

2


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Third generalized SBP example: nonuniform nodal
distribution with no repeating interior operator and no

boundary nodes

Diagonal-norm operator on Legendre-Gauss quadrature nodal distribution given
for 3 nodes by (x ∈ [0, 1]):

x =
1

2

[
−
√

15

5
, 0,

√
15

5

]T

+

(
1

2

)
1

where 1 is a vector of ones

D = 2

 −
1
2

√
15 2

3

√
15 −1

6

√
15

−1
6

√
15 0 1

6

√
15

1
6

√
15 −2

3

√
15 1

2

√
15


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Generalized SBP Operators

G
e

n
e

ra
li
z
e

d
 S

B
P

Classical SBP

Collocation DG

• classical SBP operators are applied in the traditional finite-difference manner
– uniform meshes in computational space, repeating interior operator

• generalized SBP operators can be applied in an element-type manner, can
have repeating interior operator or not, can have uniform or nonuniform nodal
distribution
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Element-type Finite-Difference Methods

basis 
functions elements Taylor 

series
repeating 
interior 

operator

finite-difference 
method ✘ ✘ ✔ ✔

finite-element 
method ✔ ✔ ✘ ✘

element-type 
finite-difference 

method
✘ optional ✔ optional
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Multidimensional GSBP Operators: some notation

In two dimensions:

S = (xi, yi)
n
i=1

u = [U(x1, y1), . . . ,U(xn, yn)]T

Monomials of total degree p (size in 2D: n∗p = (p+ 1)(p+ 2)/2):

Pk(x, y) ≡ xiyj−i, k = j(j + 1)/2 + i+ 1 ∀j ∈ [0, 1, . . . , p], i ∈ [0, 1, . . . , j]

pk ≡ [Pk(x1, y1), . . . ,Pk(xn, yn)]T

p′k ≡ [
∂Pk
∂x

(x1, y1), . . . ,
∂Pk
∂x

(xn, yn)]T
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Two-Dimensional GSBP Operator: definition

1. accuracy to degree p:

Dxpk = p′k ∀k ∈ [1, 2, . . . , n∗p]

2. Dx = H−1Qx where H is symmetric positive definite (focus on diagonal H)

3. to mimic IBP:

Qx +QTx = Ex,which satisfies pTkExpm =

∮
Γ

PkPmnxdΓ ∀k,m ∈ [1, 2, . . . , n∗τ ]

where τ ≥ p

Mimics integration by parts as in the 1D case:∫
Ω

V∂U
∂x

dΩ +

∫
Ω

U∂V
∂x

dΩ =

∮
Γ

VUnxdΓ⇔ vTHDxu + uTHDxv = vTExu

(exact for pk, pm where k,m ≤ n∗p)
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Construction of Eξ and Application of SATs

• open circles are the volume nodes at which the solution is stored

• black squares are the cubature nodes for the face used in decomposition of E
and application of SATs

• BL/R hold the cubature weights

• RL/R are interpolation/extrapolation operators from the volume nodes to the
face cubature nodes

• SATs are applied in a pointwise manner at the face cubature nodes
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Construction of Operators

1. Choose or construct a symmetric cubature rule of total degree 2p − 1 on a
nodal distribution with at least n∗p nodes – gives diagonal H

2. Choose or construct a cubature rule and nodal distribution for the faces (e.g.
Legendre-Gauss with p+ 1 nodes) – gives B

3. Construct the interpolation/extrapolation operators R from volume nodes to
face nodes

4. Construct matrices Eξ and Eη

5. Determine matrices Qξ and Qη from the accuracy conditions
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Two Example Families of Operators

p = 1 p = 2 p = 3 p = 4

SBP-Γ family of operators with p+ 1 nodes on each face

p = 1 p = 2 p = 3 p = 4

SBP-Ω family of operators with nodes only in the interior of the element
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Accuracy (2D linear convection on curvilinear mesh)

SBP-Γ family SBP-Ω family

• periodic boundary conditions, divergence-free velocity field

• convergence rates of O(hp+1) typically achieved

• consistent trends on highly nonsmooth meshes
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Conservation and Stability

SBP-Γ family SBP-Ω family

• conservative to machine precision (1THgu0 − 1THgu)

• energy stable (skew-symmetric form solved with upwind SATs)

• superlinear convergence of energy reduction (uT0Hgu0 − uTHgu)
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Conclusions

• The multi-dimensional summation-by-parts property is a powerful means of
developing stable (and hence robust) high-order operators for unstructured
grids

– concept can be exploited in discontinuous Galerkin and flux reconstruction
methods as well as in SBP operators

• Multi-dimensional summation-by-parts operators represent a potentially
powerful option for high-order methods

– very general as a result of the absence of explicit basis functions in their
derivation

– increased flexibility and generality can be exploited in various ways

• Recent extension to multi-dimensions opens up new opportunities for
unstructured grids

– much work remains to be done to unlock the potential of SBP operators!
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Relationship Between SBP, DG, and CPR?

• are there methods that are advantageous in certain respects or contexts that
lie only within the SBP circle?
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